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Abstract

To decode the available data, the distribution of the underlying dark
matter has to be inferred from the galaxy distribution. In principle,
one can assume the two distributions are quite different, i.e., galaxies
are biased tracers of the underlying density field. For a class of
phenomelogical models, galaxy fluctuations δg are assumed to be a
monotonic function of the matter fluctuation field f(δm).

Hence, an accurate knowledge of such a function is required
to interpret galaxy statistics in light of theories of structure
formation/evolution.



Discrete Case

For the discrete probability distributions PN the generating function
is defined as

P (x) =
∞∑

N=0

PNxN

From P (x) we can get PN by means of series expansion

PN =
1

N !

(
d

dx

)N

P (x)

∣∣∣∣∣
x=0



CIC (1)

Let PN(`) be the probability that a randomly thrown cell in the
simulation contains N particles, with implicit dependence on the cell
size `.

P̃N(`) =
1
C

C∑
i=1

δD(Ni = N)

where C is the number of cells thrown and Ni is the number of objects
in cell i.



CIC (2)

Figure 1: Illustrates the geometric calculation of counts in cells. There
are four points within the solid boundary. The centres of square cells can
lie within the dashed boundary. Around each point a square is drawn to
represent the possible centers of cells which contain that point. Szapudi
et al.(1999), Szapudi & Colombi (2004)





From Galaxies to Mass

The cumulative probability distribution functions of the galaxy and
matter density fluctuation fields, Cg(δg) and Cm(δm) obey the following
relation

Cg(δg) =
∫ δg=f(δm)

−1

p(δg) dδg =
∫ δm

−1

p(δg)
∣∣∣∣ dδg

dδm

∣∣∣∣ dδm = Cm(δm)

To recover the bias function we need to know both cumulative
distributions

δg = f(δm) = C−1
g [Cm(δm)] Szapudi & Pan (2004)



CIC (3)

PN is directly related to the continuous function under the locally
Poissonian approximation

PN(`) =
∫ ∞

−1

p(δ)
[〈N〉 (1 + δ)]N e〈N〉(1+δ)

N !
dδ =

∫ ∞

−1

p(δ)K(N, δ)d δ

where K(N, δ) is a Poissonian kernel, 〈N〉 > is the mean CIC and N is
within [0, Nmax]



Richarson-Lucy Deconvolution (1)

To invert the above equation in a model independent way, we use
we use the Richarson-Lucy (RL) method. This is an iterative method is
based on Bayes’s theorem. In the probabilistic spirit of this method, the
functions need rescaling

K̂ =
K∑
N K

and p̂ = p
∑
N

K

From this, a better approximation of p̂ is obtained

p̂2 = p̂1

Nmax∑
N=0

PN

PN,1
K̂(N, δ)



Richard-Lucy Deconvolution (2)
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Figure 2: On the left is the RL inversion of an artificial PDF + 5%
noise level for a number of different iterations [5 (dotted), 15 (dashed),
100 (dash-dotted)], while the right figure represents the cost function
χ2 =

∑
N(PN/PN,i − 1)2.



Bias Function
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SDSS Mock CPDF
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Figure 3: CPDF’s SDSS mock galaxy catalog on scales of 2.21, 4.42,
8.83, and 17.66 h−1 Mpc. GIF simulations: L = 141.3h−1 Mpc, mass
1.4 × 1010 M�, 2563 particles “Concordance Model”



SDSS Bias Function (GIF mocks) (1)
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Conclusions

Tests based on high-resolution dark matter simulations and
corresponding mock galaxies catalogs show that we can reconstruct the
nonlinear bias function down to highly nonlinear scales with precision in
the range of −1 ≤ δ ≤ 5.


